© И.В. Зедгенидзе, 2008

Математическое моделирование компоновок стержневых аппаратов внешней фиксации

И.В. Зедгенидзе

The mathematical modeling of the configurations of rod external fixators

I.V. Zedgenidze

ГУ НЦРВХ ВСНЦ СО РАМН (директор – член-корреспондент РАМН Е.Г. Григорьев)

Техническим результатом предлагаемых компоновок стержневых аппаратов является повышение жесткости фиксации отломков за счет проведения стержней в разных плоскостях и под разными углами, в то же время разброс показателей жесткости фиксации отломков в различных плоскостях говорит об эластичности фиксации отломков, что влияет на процесс консолидации перелома.

Ключевые слова: биомеханика, стержневые аппараты, внешняя фиксация, математическое моделирование.

The increase of fragmental fixation rigidity at the expense of rod insertion in different planes and at different angles is a technical result of the proposed configurations of rod fixators; at the same time scattering of the measurements of fragmental fixation rigidity in different planes points to the elasticity of fragmental fixation, that influences on the process of fracture consolidation. Keywords: biomechanics, rod fixators, external fixation, mathematical modeling.

С помощью программного комплекса Nastran, расчетная часть которого базируется на методе конечных элементов (МКЭ), были выполнены исследования жесткости стержневых систем, предназначенных для фиксации костных отломков. Костный отломок моделировался трубчатым стержнем с наружным диаметром D=20 мм, внутренним диаметром d=14 мм и длинной 125 мм. Модуль Юнга для материала кости принимался E_K =21000 МПа. Стальные стержни имели d=5 мм, длину 70 мм и модуль Юнга E_C =190000 МПа. Закрепление стержней в костном отломке принималось абсолютно жестким, соединение стержней между собой также моделировалось с помощью жесткой заделки.

Целью исследования являлось определение оптимального пространственного расположения стержней, обеспечивающего минимальное смещение костного отломка в месте перелома в результате силового воздействия. В качестве условной нагрузки рассматривались три силовых фактора, действующих в пространственной системе координат YXZ (ось X направлена по продольной оси костного отломка): усилия F_Y =1000 H, F_Z =1000 H.

Исследованы варианты компоновки подсистемы аппарата внешней фиксации, состоящие из трех стержней, при этом стержни введены перпендикулярно к оси отломка и взаимно развернуты вокруг оси отломка так, что два из трех стержней расположены в одной плоскости.

В ходе исследования рассматривались линейные смещения центра тяжести сечения костного отломка в месте перелома по осям Y, X, Z раздельно от каждого силового фактора. Нагрузка прикладывалась в месте перелома.

ОБЪЕМНАЯ ПОДСИСТЕМА В ДВУХ ПЛОСКОСТЯХ

Технические условия.

Все стержни проведены перпендикулярно оси отломка. Крайние стержни (L1 и L2) проведены в

одной плоскости, под углом у к плоскости среднего стержня (R). Точка «А» – место перелома (рис. 1).

Рис. 1. Схема расположения и перемещения стержней, вариант компоновки 1

Рассмотрены три варианта поворота стержней (разведения плоскостей) вокруг оси отломка: γ =30°, γ =60°, γ =90°.

Рассмотрены три варианта расположения среднего стержня — на $\frac{1}{4}$, $\frac{1}{2}$ и $\frac{3}{4}$ расстояния между крайними стержнями, от дистального стержня (соотв. γ (1–1), γ (2–1), γ (3–1)).

Расчетные линейные деформации (в мм) при приложении нагрузки на место перелома (точка «А»), в зависимости от расположения среднего стержня и угла γ приведены в таблицах 1–3. Учитывая систему координат, начиная с 0 вправо — положительные результаты, влево — отрицательные.

При воздействии силы по оси X с изменением положения и плоскости среднего стержня отмечается увеличение линейных смещений по оси X от 1,75 мм в положении 30(2-1) до 1,83 в положении 90(x-1), колебания не превышают 0,08 мм (табл. 1).

При воздействии силы на место перелома по осям Y и Z с увеличением угла разведения плоскостей имеется тенденция к увеличению линейных смещений по оси X с 0,2 до 0,3 мм, при этом перемещение среднего стержня от периферии к месту перелома при каждом угле разведения увеличивает стабильность подсистемы.

При воздействии на место перелома силы по оси X при угле γ =30° и перемещении среднего стержня от периферии к месту перелома отмечается незначительное увеличение линейных смещений по оси Y с 0,14 до 0,16 мм. При увеличении угла поворота плоскостей (γ =60°, 90°) отмечается тенденция к увеличению линейных смещений, но при этом перемещение среднего стержня от периферии к месту перелома приводит к снижению линейных смещений по оси Y (табл. 2).

При воздействии силы на место перелома по оси Y и Z имеется тенденция к увеличению линейных смещений по мере увеличения разведения плоскостей с четким уменьшением линейных смещений по мере приближения среднего стержня к месту перелома.

При воздействии на место перелома силы по оси X наименьшие смещения отмечаются при γ =30°, независимо от вариантов перемещения среднего стержня и равняются 0,3–0,37 мм. С увеличением угла разведения плоскостей стержней отмечается незначительное увеличение линейного смещения по оси Z (0,58 мм) в положении (1–1) и приведение к средним показателям (0,3 мм) в положении среднего стержня (3–1) (табл. 3).

При воздействии на место перелома силы по оси Y с увеличением угла разведения плоскостей отмечается увеличение линейных смещений в исходном положении (1–1) от 2,19 мм до 3,71 мм, но по мере перемещения среднего стержня от периферии к месту перелома отмечается значительное снижение линейных смещений по оси Z в положении среднего стержня (3–1), равное 1,05-1,12 мм.

При воздействии на место перелома силы по оси Z отмечается значительное линейное смещение по оси Z при разведении плоскостей проведения стержней под углом 30° , равное 8,04 мм в положении (1-1), которое снижается до 2,94 мм в положении среднего стержня (3-1). По мере увеличения угла разведения плоскостей, при 60(1-1) величина смещений равна 5,96 мм, при 90(1-1)-3,94 мм. По мере перемещения среднего стержня от периферии к месту перелома величина линейных смещений по оси Z снижается с 1,99 мм при 60(3-1) до 1,37 мм в положении стержня 90(3-1).

Таблица 1

Линейные смещения по оси X

Направление усилия	30(1-1)	30(2-1)	30(3-1)	60(1-1)	60(2-1)	60(3-1)	90(1-1)	90(2-1)	90(3-1)
Fy	-0,14	-0,15	-0,16	-0,39	-0,35	-0,29	-0,60	-0,52	-0,39
Fx	1,76	1,75	1,76	1,81	1,80	1,81	1,83	1,83	1,83
Fz	0,37	0,36	0,30	0,58	0,50	0,36	0,52	0,44	0,31

Таблица 2

Линейные смещения по оси Ү

Направление усилия	30(1-1)	30(2-1)	30(3-1)	60(1-1)	60(2-1)	60(3-1)	90(1-1)	90(2-1)	90(3-1)
Fy	0,88	0,72	0,53	2,24	1,52	0,9	4,01	2,56	1,39
Fx	-0,14	-0,15	-0,16	-0,39	-0,35	-0,29	-0,60	-0,52	-0,39
Fz	-2,19	-1,54	-0,86	-3,36	-2,1	-1,05	-3,71	-2,27	-1,12

Таблица 3

Линейные смещения по оси Z

Направление усилия	30(1-1)	30(2-1)	30(3-1)	60(1-1)	60(2-1)	60(3-1)	90(1-1)	90(2-1)	90(3-1)
Fy	-2,19	-1,54	-0,86	-3,36	-2,1	-1,048	-3,71	-2,27	-1,12
Fx	0,37	0,36	0,3	0,58	0,5	0,36	0,52	0,436	0,31
Fz	8,04	5,39	2,94	5,96	3,77	1,99	3,94	2,511	1,37

Таким образом, можно сделать следующие выводы: для двухплоскостной системы с перпендикулярным проведением крайних стержней в одной плоскости и среднего стержня в другой плоскости (30, 60 и 90°) наиболее выгодными являются положения 60(3-1) и 90(3-1), т.е. средний стержень приближен к месту перелома, угол разведения плоскостей $60-90^\circ$.

Если рассматривать весь сегмент конечности, то лучшая жесткость фиксации отломков достигнута, когда в проксимальный и дистальный костные отломки вводят по три стержня аппарата перпендикулярно к оси отломков, при этом средний стержень устанавливают от ближнего к месту перелома стержня на ¹/₄ расстояния между крайними стержнями и проводят его под углом 60-90° к плоскости крайних стержней [2].

ОБЪЕМНАЯ СИСТЕМА В ТРЕХ ПЛОСКОСТЯХ «60-90-30»

Технические условия.

Средний стержень (R3) находится от первого стержня на ¹/₄ расстояния между крайними стержнями. Плоскость среднего стержня (R3) повернута вокруг оси отломка на 90° относительно плоскости проксимального (L1), плоскость дистального стержня (L2) – на 60° к плоскости стержня L1. «А» – место перелома.

Рассмотрен следующий вариант наклона стержней в плоскости отломка:

1. Схема «60–90–30» (рис. 2). Дистальный (L2) и средний (R3) стержни отклонены на 30° от места перелома, L1 отклонен на 30° к месту перелома.

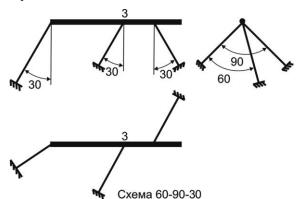


Рис. 2. Пространственное расположение стержней в трех плоскостях

В таблицах 4-6 приведены расчетные линейные деформации (в мм) на место перелома (точка «А»), в зависимости от варианта компоновки (углы наклона стержней).

Таблица 4 Деформации по оси X

Направление усилия	60-90-30
Fy	0,09
Fx	1,02
Fz	-0,83

Таблица 5 Деформации по оси Y

Направление усилия	60-90-30
Fy	0,62
Fx	0,09
Fz	0,30

Таблица 6 Деформации по оси Z

Направление усилия	60-90-30
Fy	0,295
Fx	-0,83
Fz	1,63

Наименьшие смещения при воздействии силы по оси «Х» происходят в компоновках аппаратов 60–90–30 (1,02 мм). Воздействие сил по осям Y и Z вызывает незначимые (< 1 мм) смещения и могут не учитываться.

При воздействии силы по оси «Х» на место перелома (точка «А») наименьшая величина линейных смещений отмечается в подсистеме (60–90–30) равная 0,09 мм. Воздействие силы по оси Y вызывает смещение 0,62 мм, сила по оси Z-0,3 мм, т.е. воздействие сил по всем направлениям в любом случае вызывает смещения по оси Y менее 1 мм.

При воздействии силы по оси X на место перелома (точка «А») наименьшей величиной линейного смещения по направлению действия силы является подсистема (60–90–30) у которой смещение равно 0,83 мм, воздействие силы по оси Y вызывает смещение 0,295 мм, силы по оси Z-1,63 мм.

2. Угловые деформации смещения отломка в месте перелома приведены в таблицах 7-9 (в градусах). Наименьшей величиной деформаций по всем осям характеризуется схема 60–90–30.

Таблица 7 Деформации по оси X

Направление усилия	60-90-30
Fy	0,2005
Fx	-0,5730
Fz	0,1432

Таблица 8 Деформации по оси Y

Направление усилия	60-90-30
Fy	-0,35
Fx	0,07
Fz	-1,43

Таблица 9 Деформации по оси Z

7. I I				
Направление усилия	60-90-30			
Fy	0,80			
Fx	0,17			
Fz	0.01			

выводы

Анализ результатов расчета деформаций трехплоскостных трехстержневых подсистем при различных вариантах компоновки позволяет сделать следующие выводы.

Рассматриваемая стержневая подсистема показывает высокую стабильность, допуская линейные смещения менее 2 мм (до 1,02 по оси X, до 0,62 мм по оси Y, до 1,63 мм по оси Z). При этом наиболее стабильными вариантами рассматриваемых подсистем с наклоном стержней являются 60–90–30.

Если рассматривать весь сегмент конечности, то лучшая жесткость фиксации отломков достигнута, когда в проксимальный костный отломок вводят три стержня аппарата, средний

стержень устанавливают от ближнего к месту перелома стержня на ¼ расстояния между крайними стержнями, все стержни вводят под углом 30° к перпендикуляру оси отломка, при этом самый удаленный от места перелома стержень и средний стержень вводят с наклоном от места перелома, а ближний к месту перелома стержень вводят в отломок с наклоном к месту перелома, причем средний стержень вводят с поворотом вокруг оси отломка на 60° от самого удаленного от места перелома стержня и на 30° от ближнего к месту перелома стержня. Аналогичным образом вводят стержни в другой отломок. По результатам исследования получен патент на изобретение № 2281708 [1].

ЛИТЕРАТУРА

- 1. Пат. 2281708 Российская Федерация, МКИ А 61 В 17/56. Способ лечения переломов длинных костей / Виноградов В. Г., Лапшин В. Л., Зедгенидзе И. В., Ивлев Б. В., Халиман Е. А., заявитель и патентообладатель Виноградов В. Г., Лапшин В. Л., Зедгенидзе И. В., Ивлев Б. В., Халиман Е. А. —№ 204123897/14 ; заявл. 27.01.2006 ; опубл. 20.08.2006, Бюл. № 23. 1 с.
- 2. Пат. 2290115 Российская Федерация, МКИ А61В 17/56. Способ лечения переломов длинных костей / Виноградов В. Г., Лапшин В. Л., Зедгенидзе И. В., Ивлев Б. В., Халиман Е. А., заявитель и патентообладатель Виноградов В. Г., Лапшин В. Л., Зедгенидзе И. В., Ивлев Б. В., Халиман Е. А. № 204123884/14 ; заявл. 10.02.2006 ; опубл. 27.12.2006, Бюл. № 36. 1 с.

Рукопись поступила 28.07.08.