© Группа авторов, 2008

Функциональное состояние мышц нижних конечностей у больных с разной степенью выраженности гонартроза под воздействием лечения и в процессе рабилитации

Т.В. Сизова, М.С. Сайфутдинов, В.Д. Макушин, О.К. Чегуров

The functional status of lower limb muscles in patients with gonarthrosis of different manifestation degree under treatment and during rehabilitation

T.V. Sizova, M.S. Saifutdinov, V.D. Makushin, O.K. Chegurov

Федеральное государственное учреждение

«Российский научный центр "Восстановительная травматология и ортопедия" им. академика Г. А. Илизарова Росмедтехнологий», г. Курган (генеральный директор — заслуженный деятель науки РФ, член-корреспондент РАМН, д.м.н., профессор В.И. Шевцов)

На основании результатов обследования методом стимуляционной электромиографии 192 больных 17-75 лет с гонартрозом 1-3 стадии было показано, что уровень снижения средних значений амплитуды моторных ответов мышц нижних конечностей до лечения и его изменение под влиянием оперативного вмешательства соответствует выраженности патологических процессов. Методы лечения гонартроза, разработанные в РНЦ «ВТО» имени академика Г.А. Илизарова, характеризуются щадящим воздействием на нервно-мышечный аппарат поражённой конечности, не приводящим к развитию необратимых изменений в мышцах. Восстановление активационных способностей мышц имеет характер переходного колебательного процесса, физиологический смысл которого заключается в их взаимонастройке, для оптимальной реализации двигательных функций нижних конечностей. Ключевые слова: электромиография, мышцы, гонартроз, чрескостный остеосинтез.

On the basis of the results of examination of 191 patients at the age of 17-75 years with gonarthrosis of 1-3 Stage by the method of stimulation electromyography it has been demonstrated, that the level of the decrease of the mean values of the amplitude of lower limb muscle motor responses before treatment, and its change under the influence of surgical intervention conform to the manifestation of pathological processes. The techniques of gonarthrosis treatment, developed at RISC "RTO", are characterized by the sparing influence on the neuromuscular system of involved limb, which doesn't lead to development of irreversible changes in muscles. The restoration of the activation potentials of muscles has the character of transient oscillation process, the physiological sense of which consists in their mutual adjustment, for optimal realization of lower limb motor functions.

Keywords: electromyography, muscles, gonarthrosis, transosseous osteosynthesis.

В ранее проведённых нами исследованиях отмечалось снижение амплитуды М-ответа после лечения гонартроза [1]. Однако из-за высокой степени вариативности функционального состояния мышц анализируемых групп больных и недостаточного объёма групп сравнения процессы восстановления активационных характеристик мышц нижних конечностей у больных гонартрозом после окончания лечения методами, разработанными в Российском научном центре

«Восстановительная травматология и ортопедия» имени академика Г.А. Илизарова, остаются недостаточно изученными.

В связи с вышесказанным целью настоящей работы явилось изучение функционального состояния мышц нижних конечностей у больных с разной степенью выраженности гонартроза на различных этапах лечебно-реабилитационного процесса.

МЕТОДЫ ИССЛЕДОВАНИЯ

Методом стимуляционной электромиографии [2] обследовано 192 больных 17-75 лет (66 мужского и 126 женского пола) с гонартрозом первой (70 наблюдений), второй (44 наблюдения) и третьей (78 наблюдений) стадии по Н.С. Косинской (1961) [3] до лечения, через 2 недели после его окончания и в течение восстановительного периода (до 5 лет). У 66 больных выполнена туннелизация костей [4, 5], образующих коленный сустав (первая группа). При

нарушении биомеханической оси конечности оперативное вмешательство у 126 пациентов (вторая группа) дополнялось корригирующей остеотомией берцовых костей в верхней трети с последующим остеосинтезом голени аппаратом Илизарова [5, 6, 7]. Анализируемая выборка была разделена в зависимости от стадии гонартроза и варианта лечения (табл. 1).

В условиях супрамаксимальной стимуляции [2] соответствующих нервов регистрировали уни-

полярно (отведения типа "belly-tendon") М-ответы m. rectus femoris, m. vastus lateralis, m. vastus medialis, m. tibialis anterior, m. gastrocnemius (c. lat.), m. gastrocnemius (c. med.) с использованием цифровой ЭМГ-системы «DISA-1500» (DANTEC, Дания).

Таблица 1 Распределение пациентов анализируемой выборки по группам сравнения

	Вид лечения					
Стадии гонартроза	Тунн	елизация	Оперативная кор- рекция			
	n	n*100/N	n	n *100/N		
1	59	30,7	11	5,7		
2	2	1,0	42	21,9		
3	1	0,5	77	40,1		

Измеряли амплитуду (А) М-ответа, вычисля-

ли [4; 5] её среднее значение (М), ошибку среднего (m), а также коэффициент асимметрии (As, %) и степень снижения (D, %) после окончания лечения.

$$As = \frac{(A_{K\Pi} - A_{o\Pi}) \times 100 \%}{A_{oD}}$$
 (1);

$$D = \frac{(A_{\text{MCX}} - A_{\text{ILI}}) \times 100 \%}{A_{\text{MCX}}}$$
(2),

где $A_{\text{оп}}$ – амплитуда М-ответа мышц оперированной конечности, $A_{\text{кл}}$ – амплитуда М-ответа мышц контралатеральной конечности, $A_{\text{исх}}$ – амплитуда М-ответа до лечения, $A_{\text{пл}}$ – амплитуда М-ответа после лечения. Степень различий средних значений анализируемого параметра в разные сроки лечебно-реабилитационного процесса оценивалась с помощью t-критерия Стьюдента [8; 9].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Результаты исследования представлены в таблицах 2-3 и на рисунках 1-2. В предоперационном периоде средняя амплитуда М-ответа мышц поражённой конечности у больных второй группы меньше соответствующих величин в первой. В большинстве отведений (за исключением m. vastus lat. и m. tibialis ant.) эти различия статистически значимы (р<0,05). Для мышц контралатеральной конечности различия существенны только в отведении от m. rectus fem. Более низкие М-ответы мышц поражённой и контралатеральной конечностей во второй группе больных мы связываем с тем, что в ней доминируют случаи гонартроза на второй и третьей стадиях (таблица 1), в то время как в группе перед туннелизацией преобладают пациенты с первой стадией гонартроза, что согласуется с ранее полученными данными [1].

В обеих группах сравнения амплитуда М-ответа мышц оперированной конечности снижена относи-

тельно уровня контралатеральной (рис. 1). Степень снижения выражена неравномерно, но не превышает 20 % (p>0,05). В первой группе больных она максимальна для m. vastus lat., m. gastrocnemius lat., а во второй – для m. tibialis ant., m. gastrocnemius lat. Причём в сравниваемых группах для большинства мышц асимметрия была несколько более (p>0,05) выражена перед коррекцией.

Сразу после окончания лечения для всех тестированных мышц в обеих группах имеет место статистически значимое (p<0,05) снижение амплитуды М-ответа, более выраженное на оперированной конечности особенно во второй группе больных (рис. 1). После туннелизации это снижение несколько больше для мышц бедра, а в случае коррекции оси конечности оно одинаково выражено на бедре и голени. Во всех наблюдениях увеличивается степень асимметрии амплитуды М-ответа (p<0,05), причём в большей степени для пациентов второй группы.

Таблица 2 Динамика средних значений (M±m) амплитуды М-ответов мышц нижних конечностей у пациентов с гонартрозом

	Стадия лечения	Вид лечения								
Мышца		Туннелизация					Коррекция			
		Конечность								
		оперированная		контралатеральная		оперированная		контралатеральная		
		n	M±m	n	M±m	n	M±m	n	M±m	
M.R.F.	До лечения	59	11,2±0,7	52	12,4±0,8	121	8,8±0,5	109	10,0±0,6	
	После лечения	58	8,3±0,6"	50	11,8±0,7	100	5,5±0,4"	77	8,8±0,6	
M.V.L.	До лечения	57	5,9±0,5	50	6,8±0,5	105	6,2±0,3	84	6,6±0,4	
	После лечения	57	4,8±0,4"	46	6,6±0,4	93	3,7±0,2"	71	5,9±0,4	
M.V.M	До лечения	57	6,8±0,6	50	7,7±0,6	105	5,3±0,3	82	6,5±0,4	
	После лечения	56	4,3±0,3"	45	7,3±0,6	93	3,3±0,2"	70	5,9±0,4	
M.T.A	До лечения	57	6,7±0,3	50	7,2±0,4	107	6,1±0,2	85	7,2±0,3	
	После лечения	57	5,7±0,4"	46	6,9±0,3	96	4,5±0,2"	73	7,3±0,3	
M.G.L	До лечения	57	16,9±1,0	50	18,7±1,2	107	14,5±0,6	85	16,4±0,8	
	После лечения	57	13,5±0,9"	43	16,7±1,0	96	8,9±0,5"	73	15,0±0,8	
M.G.M	До лечения	57	16,5±1,2	50	19,1±1,3	106	13,9±0,6	85	17,4±0,8	
	После лечения	57	12,4±1,0"	43	18,2±1,1	94	8,3±0,5"	73	15,8±0,9	

Примечание: двойными кавычками отмечено наличие статистически значимых различий средних значений амплитуды М-ответа мышц оперированной конечности по сравнению с дооперационным и контралатеральным уровнем

Таблица 3 Динамика средних значений (M±m) амплитуды M-ответов мышц бедра у пациентов с гонартрозом в зависимости от его стадии

Мышца	Гонартроз	Стадия лечения	Вид лечения								
			Туннелизация					Коррекция			
			Конечность								
	ГОН		оперированная		контр	гралатеральная оп		рированная	контралатеральная		
	Ι		n	M±m	n	M±m	n	M±m	n	M±m	
	1	До лечения	46	11,7±0,8	39	12,6±0,9	10	10,9±1,9	10	11,2±1,2	
	1	После лечения	45	8,5±0,7"	37	12,3±0,9	6	6,7±1,0°	6	8,6±2,5	
M.R.F	2	До лечения	9	9,9±1,6	9	11,3±1,9	41	7,4±0,9	39	8,2±1,0	
M.]	2	После лечения	10	8,3±1,2	10	11,2±1,2	34	5,7±0,6	24	9,4±1,0	
	3	До лечения	4	8,9±2,0	4	12,4±2,3	70	9,3±0,6	60	10,9±0,7	
		После лечения	3	6,2±1,2	3	8,3±0,8	60	5,3±0,5"	47	8,6±0,8	
	1	До лечения	44	6,2±0,6	37	7,1±0,7	8	6,4±1,1	8	7,5±1,7	
		После лечения	45	4,9±0,5*	34	6,9±0,5	6	3,5±0,6°	6	5,3±1,1	
V.L	2	До лечения	9	4,8±0,6	9	6,0±0,7	37	5,8±0,5	28	6,7±0,6	
M.V.L		После лечения	10	4,4±0,6	10	5,9±0,7	33	3,9±0,4"	23	6,2±0,6	
	3	До лечения	4	5,1±0,9	4	6,0±1,2	60	6,5±0,4	48	6,5±0,5	
		После лечения	3	2,5±1,3°	3	2,8±1,6	54	3,6±0,3"	42	5,9±0,5	
M.V.M	1	До лечения	44	7,1±0,7	37	7,8±0,8	8	4,3±0,6	8	4,6±0,6	
		После лечения	44	4,5±0,4"	33	7,3±0,7	6	3,0±0,5	6	5,1±0,8	
	2	До лечения	9	5,1±0,9	9	7,4±1,6	37	4,9±0,5	27	6,8±0,6	
		После лечения	10	4,0±0,7*	10	7,8±1,4	32	3,5±0,4"	22	6,4±0,8	
	3	До лечения	4	7,4±2,5	4	7,1±2,5	60	5,7±0,4	47	6,7±0,5	
		После лечения	3	2,2±1,2'	3	3,2±2,2	55	3,2±0,3"	42	5,8±0,6	

Примечание: одной кавычкой отмечено наличие статистически значимых (p<0,05) различий средних значений амплитуды Мответа мышц оперированной конечности по сравнению с дооперационным уровнем; звёздочкой отмечено наличие статистически значимых (p<0,05) различий средних значений амплитуды Мответа мышц оперированной конечности по сравнению с контралатеральной; двойными кавычками отмечено наличие статистически значимых различий средних значений амплитуды Мответа мышц оперированной конечности по сравнению с дооперационным и контралатеральным уровнем

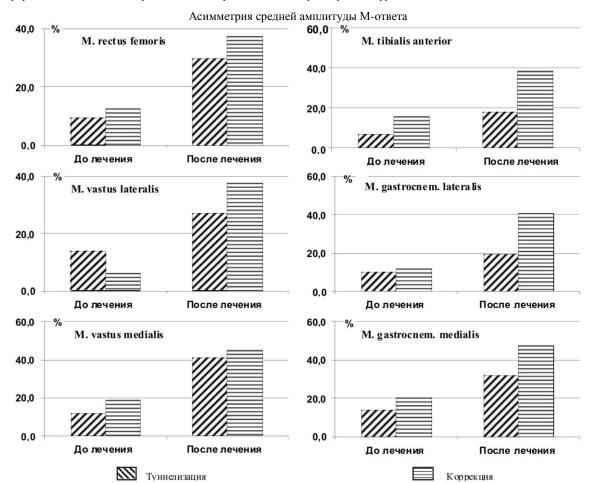
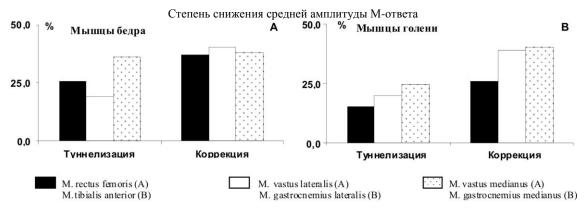



Рис. 1. Асимметрия и степень снижения после лечения (поражённая сторона) амплитуды М-ответа мышц нижних конечностей у больных с гонартрозом

Продолжение рис. 1. Асимметрия и степень снижения после лечения (поражённая сторона) амплитуды М-ответа мышц нижних конечностей у больных с гонартрозом

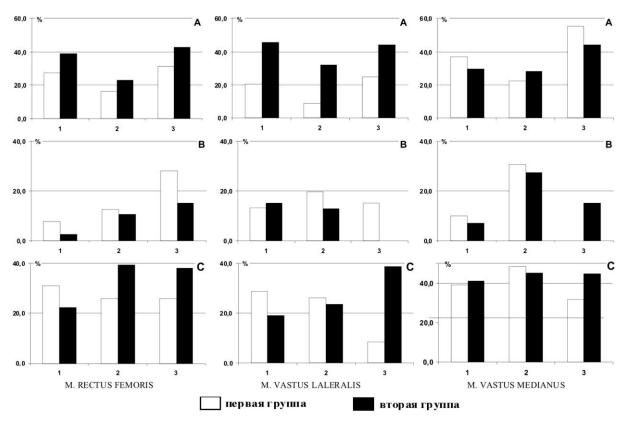


Рис. 2. Степень снижения (A) амплитуды M-ответа после лечения и её асимметрия до (B) и после (C) его окончания

Влияние стадий развития гонартроза на состояние мышц бедра представлено в таблице 3 и на рисунке 2. В предоперационном периоде в большинстве случаев средняя амплитуда М-ответов мышц бедра при первой стадии гонартроза выше, чем при второй и третьей в обеих группах больных, но данные различия статистически не значимы. Её асимметрия также статистически не значима (p>0,05), за исключением m. vastus med. (p<0,05) во второй группе больных при второй стадии гонартроза (рис. 2, в).

После окончания лечения имеет место билатеральное снижение М-ответов мышц оперированной и контралатеральной конечностей. Степень снижения М-ответов всех

мышц бедра минимальна на оперированной конечности при второй стадии гонартроза и максимальна при третьей, причём в обеих группах больных (рис. 2, а). Асимметрия амплитуды М-ответов увеличилась в большинстве наблюдений (рис. 2, с), за исключением случаев гонартроза третьей стадии после туннелизации.

Восстановление амплитуды М-ответа после лечения протекает по-разному. После туннелизации (рис. 3) для мышц бедра оперированной конечности этот процесс протекает практически монотонно. М-ответы стабилизируются на уровне, близком к дооперационному через 12-18 месяцев. Восстановление вызванной биоэлектрической активности всех

Гений Ортопедии № 2, 2008 г.

тестированных мышц контралатеральной конечности и мышц голени оперированной конечности протекает как колебательный переходный процесс, т.е. изменения анализируемого параметра носят волнообразный характер, когда периоды увеличения биоэлектрической активности сменяются её спадом и наоборот. При этом в фазу прироста амплитуда М-ответа может превышать дооперационный уровень. При этом постоянно меняется степень асимметрии данного параметра.

После оперативной коррекции оси конечности (рис. 4) монотонный характер восстановления амплитуды М-ответов сохраняется только для m. vastus lat. и m. vastus med. на

оперированной конечности. Для всех остальных тестируемых мышц он носит волнообразный характер. Колебания параметра для симметричных мышц оперированной и контралатеральной конечностей происходят синфазно. Интересно отметить, что в сравнении с туннелизацией стабилизация биоэлектрической активности наступает позднее — к 24 месяцам и соответственно предшествующая ей фаза экзальтации параметра также сдвигается в сторону более поздних сроков.

Таким образом, восстановление Мответов после лечения носит волнообразный характер и в первой группе больных протекает быстрее, чем во второй.

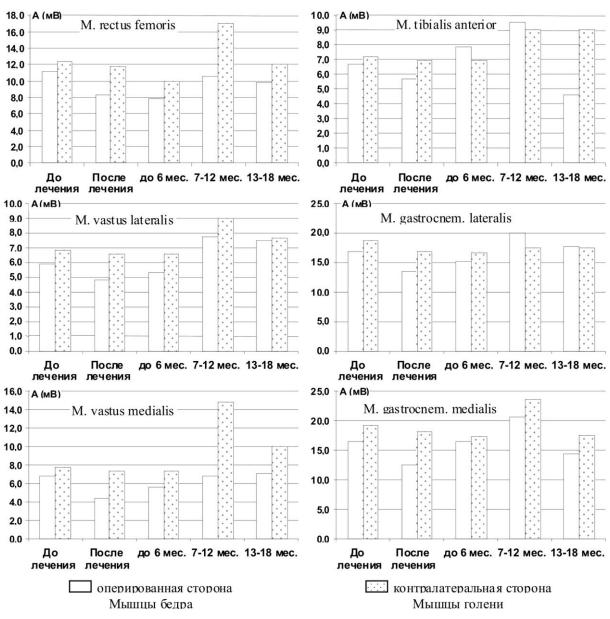


Рис. 3. Динамика амплитуды М-ответа мышц нижних конечностей у больных с гонартрозом после туннелизации

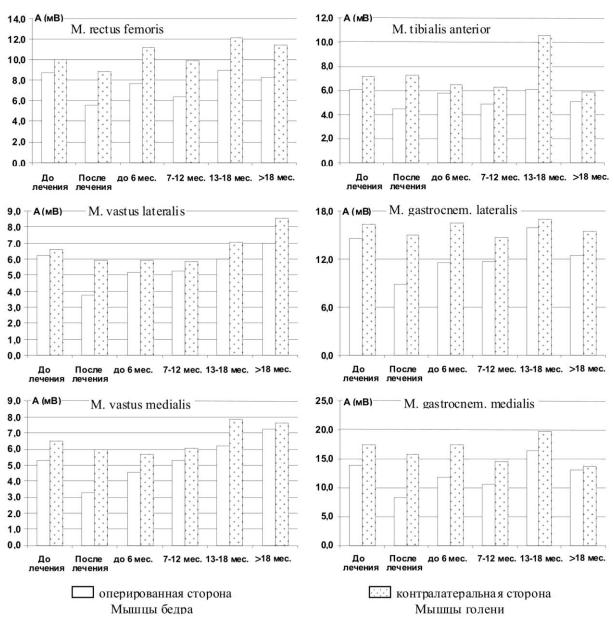


Рис. 4. Динамика амплитуды М-ответа мышц нижних конечностей у больных с гонартрозом после коррекции оси конечности

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ограничение двигательной активности больных с гонартрозом, возникающее из-за ограничений функции коленного сустава, ведёт к снижению интенсивности проприорецептивной афферентации. При этом вследствие воспалительного процесса повышена ноцицептивная активность и тесно связанная с ней импульсация в сенсорной фракции симпатических и парасимпатических нервных проводников. Это нарушает существующий в норме баланс в соматосенсорной системе и является одной из причин острой сосудистой реакции, выявляемой в мышцах при использовании гипсовой повязки [10]. Всё это в совокупности способствует снижению активационных характеристик мышц [11], обеспечивающих функцию коленного сустава, что приводит к гиподинамическим и гипокинетическим изменениям их структуры. Так, в экспериментах с фиксацией коленного сустава аппаратом Илизарова у собак было показано, что в условиях ограничения подвижности нарастает степень неоднородности внутренней структуры мышц, вплоть до появления на срок 28 дней иммобилизации морфологических изменений [12]. Среди них следует отметить электронно-микроскопические признаки энергетического голода сократительного аппарата [12]. На световом уровне морфологические изменения носят очаговый характер и случайным образом распределены в мышечной ткани [12]. Функционально микроструктурные перестройки такого типа могут приводить к неоднородности

Гений Ортопедии № 2, 2008 г.

расслабления мышцы, сохранению в ней зон остаточного напряжения, что является по современным представлениям начальной стадией развития мышечной контрактуры [1].

Для согласования морфологических данных, полученных на микроуровне, с ЭМГ-параметрами, характеризующими мышцу в целом, т.е. её макроуровень, можно использовать методы ультразвуковой визуализации [13], позволяющие оценить степень выраженности перисто-волокнистого рисунка, образуемого пучками мышечных волокон n-го порядка (их направление и угол к оси мышцы), состояние соединительнотканных перегородок между отдельными мышечными порциями и окружающими тканями [14]. В ранее проведённых исследованиях [15] сопоставление данных электромиографии, динамометрии и ультразвуковой визуализации четырёхглавой мышцы бедра выявило чёткую взаимосвязь структурных и функциональных изменений в мышцах, в частности зависимость амплитудно-частотных характеристик ЭМГ и момента силы мышцы от УЗИ- картины её внутренней организации. По данным литературы [16; 17], различные способы визуализации выявляют многообразные признаки структурных изменений в мышцах бедра при заболеваниях коленного сустава.

Наблюдаемое в предоперационном периоде снижение средней амплитуды М-ответов мы связываем с атрофией части двигательных единиц вследствие локальной гиподинамии, обусловленной разгрузкой конечности по анталгическому типу в условиях присутствия очага хронической ноцицептивной афферентации (область коленного сустава). Вероятнее всего, атрофии в первую очередь подвергаются мышечные волокна, входящие в состав быстрых двигательных единиц как филогенетически более молодых структурных образований, чувствительных к действию неблагоприятных факторов.

При гонартрозе пусковым механизмом развития патологического процесса являются изменения гомеостаза внутритканевой среды вследствие воспалительного процесса в тканях, которые в сочетании с вторично возникающим

ограничением подвижности в суставе и изменённым качественным и количественным составом соматосенсорной афферентации создают более благоприятные условия для развития соединительной ткани, чем мышечной. Вышеперечисленные факторы, являющиеся в зависимости от ситуации первичными или вторичными, в комплексе оказывают на мышечную ткань однонаправленное влияние, приводящее к развитию контрактуры.

Волнообразный характер восстановления Мответов мышц после лечения отражает процесс адаптации двигательной системы к постепенному увеличению функциональной нагрузки. При этом фаза экзальтации, когда активируется максимально возможное количество двигательных единиц в мышцах оперированной и контралатеральной конечностей, нередко сопровождается увеличением степени асимметрии, несмотря на синхронность изменений, поскольку прирост амплитуды М-ответа на оперированной конечности отстаёт от контралатеральной. Но на последующей фазе спада параметра его значения приближаются к дооперационному уровню и степень асимметрии уменьшается. Происходит тонкая настройка уровней функционального состояния мышц нижних конечностей.

Таким образом, уровень снижения средних значений амплитуды моторных ответов мышц нижних конечностей до лечения и его изменение под влиянием оперативного вмешательства соответствует выраженности патологических процессов при гонартрозе. Методы лечения гонартроза, разработанные в Российском научном центре «Восстановительная травматология и ортопедия» имени академика Г.А. Илизарова характеризуются щадящим воздействием на нервно-мышечный аппарат поражённой конечности, не приводящим к развитию необратимых изменений в мышцах. Восстановление активационных способностей мышц имеет характер переходного колебательного процесса, физиологический смысл которого заключается в их взаимонастройке, для оптимальной реализации двигательных функций нижних конечностей.

ЛИТЕРАТУРА

- 1. Вызванная биоэлектрическая активность мышц нижних конечностей у больных с гонартрозом / А. П. Шеин [и др.] // Вестн. травматологии и ортопедии им. Н. Н. Приорова. 2003. № 1. С. 63-66.
- 2. Команцев, В. Н. Методические основы клинической электронейромиографии : рук. для врачей / В. Н. Команцев, В. А. Заболотных. СПб. : Лань, 2001. 350 с.
- 3. Косинская, Н. С. Дегенеративно-дистрофические поражения костно-суставного аппарата / Н. С. Косинская. М. : Медицина, 1961. 346 с.
- 4. Макушин, В. Д. Субхондральная туннелизация : вопросы технологии и эффективности лечения при гонартрозе (обзор литературы и собственные данные) / В. Д. Макушин, О. К. Чегуров // Гений ортопедии. 2006. № 4. С. 99-104.
- 5. Макушин, В. Д. Оперативное лечение гетерогенного деформирующего артроза коленного сустава / В. Д. Макушин, О. К. Чегуров, Е. А. Волокитина // Гений ортопедии. 2001. № 1. С. 18-24.
- 6. Макушин, В. Д. Гонартроз : отдаленные результаты применения высокой вальгизирующей остеотомии большеберцовой кости (обзор зарубежной литературы) / В. Д. Макушин, О. К. Чегуров // Гений ортопедии. 2007. № 1. С. 137-141.
- 7. Макушин, В. Д. Симультанные операции при остеоартрозе коленного сустава / В. Д. Макушин, О. К. Чегуров // Гений ортопедии. 2004. № 2. С. 30-36.
- 8. Лакин, Г. Ф. Биометрия / Г. Ф. Лакин. М. : Высшая школа, 1980. 293 с.
- 9. Плохинский, Н. А. Биометрия / Н. А. Плохинский. М. : Изд-во МГУ, 1979. 367 с.

- 10. Недригайлова, А. В. Иммобилизационные контрактуры (изменение строения тканей опорно-двигательного аппарата при иммобилизации) и восстановительные процессы под влиянием функции : автореф. дис... д-ра мед. наук / А. В. Недригайлова. Харьков, 1957. 24 с.
- 11. Витензон, А. С. Влияние иммобилизации сустава на электрическую активность мышц при ходьбе / А. С. Витензон, К. А. Петрушевская // II Всероссийская конференция по биомеханике. Памяти Н. А. Бернштейна: тез. докл. Н. Новгород, 1994. Т. I. С. 95-96.
- 12. Чикорина, Н. К. Влияние иммобилизации коленного сустава аппаратом Илизарова на структуру скелетных мышц голени в эксперименте / Н. К. Чикорина // Гений ортопедии. 1995. № 2. С. 50-53.
- 13. Сайфутдинов, М. С. Комплексное исследование мышц при удлинении конечностей / М. С. Сайфутдинов, Т. И. Менщикова, Н. К. Чикорина // Морфофункциональные аспекты регенерации и адаптивной дифференцировки структурных компонентов опорно-двигательного аппарата в условиях механических воздействий: материалы междунар. науч.-практ. конф. Курган, 2004. С. 238-240.
- 14. Возможности рентгенологической и ультрасонографической оценки состояния мягких тканей при лечении укорочений нижних конечностей по методу Илизарова / В. И. Шевцов [и др.]. Курган, 2003. 167 с.
- 15. Структура и функция четырёхглавой мышцы бедра у больных с акинематическим гонартрозом / А. П. Шеин [и др.] // Гений ортопедии. 2000. № 3. С. 34-41.
- 16. Гюльназарова, С. В. Хирургическое лечение больных с посттравматическими контрактурами коленного сустава / С. В. Гюльназарова, Л. А. Казак // Травматол. и ортопед. России. 1996. № 2. С. 24-27.
- 17. Казак, Л. А. Возможности ультразвуковой диагностики в оценке состояния мягких тканей бедра при посттравматических контрактурах коленного сустава / Л. А. Казак, И. Г. Федотов // Ортопед., травматол. 1993. № 4. С. 82-85.

Рукопись поступила 25.12.07.

Предлагаем вашему вниманию

В.И. Шевцов, А.П. Шеин, А.А. Скрипников, Г.А. Криворучко РЕАКТИВНОСТЬ И ПЛАСТИЧНОСТЬ КОРЫ ГОЛОВНОГО МОЗГА В УСЛОВИЯХ ВАЗОАКТИВНОЙ КРАНИООСТЕОПЛАСТИКИ

Курган : ДАММИ, 2006. – 124 с.: ил. 22.

В монографии проанализированы основные тенденции в изменении качественных, количественных электроэнцефалографических и электронейромиографических характеристик функционального состояния больных с последствиями инсульта и тяжелой черепно-мозговой травмы в процессе лечения по методике вазоактивной краниоостеопластики, разработанной в Российском научном центре «Восстановительная травматология и ортопедия» имени академика Г.А. Илизарова. Изучены специфические особенности реакции центральной нервной системы на вазоактивную краниоостеопластику у пациентов в зависимости от возраста, этиологии и тяжести исходного поражения пирамидных структур головного мозга, а также сформулированы представления о стадийности и механизмах реактивных перестроек в коре головного мозга под влиянием вазоактивной краниоостеопластики у больных указанных нозологических групп. Кроме того, авторами представлен новый способ оценки выраженности центрального гемипареза по данным электронейромиографии — методика расчета цереброспинального индекса, а также на основе применения данного критерия — технология картирования моторных зон коры больших полушарий головного мозга.

Книга предназначена для нейрофизиологов, нейрохирургов, реабилитологов.